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ABSTRACT: Reactive oxygen species (ROS) play crucial roles
in cell signaling and redox homeostasis and are strongly related
to metabolic activities. The increase of the ROS concentration
in organisms can result in several diseases, such as
cardiovascular diseases and cancer. The concentration of ROS
in biologically relevant conditions is typically as low as around
tens of micromolars to 100 μM H2O2, which makes it necessary
to develop ultrasensitive ROS-responsive systems. A general
approach is reported here to fabricate an ultrasensitive ROS-
responsive system via coassembly between tellurium-containing
molecules and phospholipids, combining the ROS-responsive-
ness of tellurium and the biocompatibility of phospholipids. By
using dynamic light scattering, transmission electron micros-
copy, scanning electron microscopy, and NMR spectra,
coassembly behaviors and the responsiveness of the coassemblies have been investigated. These coassemblies can respond to
100 μM H2O2, which is a biologically relevant ROS concentration, and demonstrate reversible redox properties.
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■ INTRODUCTION

Reactive oxygen species (ROS), which indicate chemically
reactive oxygen-containing ions and free radicals with valence
electrons or unstable bonds, are short-lived and tend to react
with other molecules.1−4 ROS are formed as a natural
byproduct from cell metabolism, especially from mitochondrial
metabolism, and play crucial roles in cell signaling and redox
homeostasis.5−8 Abnormal ROS concentration, either too low
or too high, will give rise to diseases.9,10 The ROS
concentration usually rises with the general aging process of
cells and results in significant cell damage.11−13 This is known
as oxidative stress, which is considered to be one of the major
characteristics of many diseases, including Parkinson’s dis-
eases,14 Alzheimer’s disease,15 cardiovascular diseases,16 and
cancer.17,18 Besides these diseases, oxidative stress is also
related to cell apoptosis, and there have been many studies
concentrated on inducing apoptosis in cancer cells as a cancer
therapy method.19−21

Recently, there have been many drug-delivery-related
researches based on targeting ROS generation systems for
effective therapy. The NOX family of NADPH oxidases, which
can transfer electrons to get through the cell membrane and
generate superoxide ions, play important roles in ROS
generation.22 Studies on the inhibition of the NOX family
have drawn great attention; however, many inhibitors still need

to be improved for better specificity. It is still a challenge to find
solutions to control the concentration of ROS.23 Except for
seeking proper inhibitors, another facile way to eliminate ROS
is to use ROS-sensitive compounds.24 Previous work from our
group based on ROS-responsive selenium-containing systems
has provided some successful examples, including hydrogel25

and aggregates in the solution phase26−32 and on the surface.33

As another element of chalcogen, tellurium is similar to
selenium and has biological activity as tellurocysteine and
telluromethionine in fungi.34 Organotellurium compounds,
which are similar to organoselenium compounds, have been
employed as glutathione peroxidase mimics35−37 and described
to be promising biomaterials as pharmacological agents for
antioxidant and anticarcinogen therapeutics.38,39 There have
been some studies on organotellurium compounds in our
group, including coordination-responsive telluride-containing
polymers40 and layer-by-layer films,41 which can both release
cisplatinum in the presence of multiamine-containing molecules
(e.g., spermine). It is known that the concentration of ROS
present in biologically relevant conditions is typically as low as
around tens of micromolars to 100 μM H2O2;

42,43 thus, it is
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significant to develop oxidation-sensitive materials that show
ultrasensitivity to accurately respond to ROS-sufficient
positions of the human body.44 Owing to the ultrasensitive
responsiveness to ROS of tellurium-containing polymers,45

tellurium-containing compounds may be utilized as promising
innovative ROS-eliminating materials under physiological
environments.
Phospholipid is the main component of the plasma

membrane, which plays eminent roles in cellular metabolic
activities.46 It has excellent biocompatibility and biodegrad-
ability; therefore, liposome and lipid nanoparticles have been
widely used in the drug-delivery area.47−49 Coassembly, which
has been employed to fabricate different kinds of nanostruc-
tures (such as nanoparticles, nanofibers, hydrogels, and films)
or special materials showing photoelectronic properties or
biomedical applications,32,50−56 is able to integrate both merits
of the building blocks and obtain aggregates different from
those of either of the individual self-assemblies. We successfully
generated ultrasensitive ROS-responsive coassemblies by add-
ing a small portion of tellurium-containing molecules into
phospholipids to coassemble. Owing to the reversible redox
property of tellurium-containing molecules, the structures of
coassemblies expressed a reversible change under redox
conditions (as shown in Scheme 1).

■ EXPERIMENTAL SECTION
Materials. Tellurium powder and sodium borohydride were

purchased from Aladdin Chemical Company. 1,2-Diphytanoyl-sn-
glycero-3-phosphocholine (25 mg/mL, chloroform solution, denoted
as DPPC, as shown in Scheme 2a) was purchased from Avanti Polar
Lipids. 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine (denoted
as DPPE, as shown in Scheme 2b) and 11-bromoundecanoic acid were
products of TCI. A buffer solution of pH = 9.00 (20 °C, boric acid/
potassium chloride/sodium hydroxide) was a product of J&K
Scientific Ltd. L-(+)-Ascorbic acid was purchased from Alfa Aesar.
Hydrogen peroxide (H2O2), other organic solvents, and chemicals
used in this work were analytical grade products from Beijing
Chemical Reagent Company.
Instrument. The 1H and 13C NMR spectra were recorded on a

JEOL JNM-ECA 400 (400M) spectrometer at 298 and 353 K,

respectively. Electrospray ionization mass spectrometry (ESI-MS)
spectra were measured on a LTQ LC/MS apparatus.

Fluorescence was measured by a Hitachi F-7000 spectrofluor-
ometer.

Dynamic light scattering (DLS) tests were performed at 25 °C on a
Malvern 3000HS Zetasizer using a monochromatic coherent He−Ne
laser (633 nm) as the light source.

Transmission electron microscopy (TEM) images of the morphol-
ogy of the aggregates were obtained using a JEM-2010 microscope
with an accelerating voltage of 80 kV. Samples were prepared by
dropping the aqueous solution on a carbon-coated copper grid for 15
min, followed by staining using 1.5% uranyl acetate. Energy-dispersive
spectrometry (EDS) results were obtained by a JEM2010 transmission
electron microscope.

Scanning electron microscopy (SEM) images were obtained by a
JEOL JSM-7401F field-emission scanning electron microscope
operated at 3.0 kV. Samples were prepared by dropping the aqueous
solution on the silicon substrate for 15 min.

Synthesis of 11,11′-Tellurodiundecanoic Acid. The tellurium-
containing molecule was synthesized via the reaction of disodium
telluride and 11-bromoundecanoic acid (Figure S1 in the Supporting
Information, SI). Disodium telluride was acquired through the reaction
of tellurium powder (2 mmol, 0.255 g) and an excess amount of
sodium borohydride (4.4 mmol, 0.166 g) at 41 °C in pure water under
an atmosphere of N2. 11,11′-Tellurodiundecanoic acid (denoted as
MTeC10COOH) was prepared by the reaction of disodium telluride
and 11-bromoundecanoic acid (4 mmol, 1.06 g) at 41 °C in
tetrahydrofuran (THF) under an atmosphere of N2. After the reaction,
THF was evaporated under reduced pressure. Then the product was
acidified by HCl, followed by filtration. The filtration residue was
washed by dichloromethane to remove soluble impurities. Then the

Scheme 1. Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids

Scheme 2. Structures of DPPC and DPPE

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.5b04419
ACS Appl. Mater. Interfaces 2015, 7, 16054−16060

16055

http://dx.doi.org/10.1021/acsami.5b04419


residue was redissolved by a mixed solvent of dichloromethane and
methanol (CH3OH; 1:1, v/v), and the filtrate was evaporated by using
rotary evaporators. The obtained product was a buff powder (yield
53%).

1H NMR (Figure S2a in the SI; 400 MHz, CD3OD, 298 K): δ 2.64
(4H, t, TeCH2), 2.16 (4H, t, CH2COOH), 1.74 (4H, m, TeCH2CH2),
1 .60 (4H, m, CH 2CH2COOH), 1 .43−1.29 (24H, m,
HOOCCH2CH2(CH2)6CH2CH2Te).

13C NMR (Figure S2b in the
SI; 400 MHz, DMSO-d, 353 K): δ 173.9 (1C, s, COOH), 33.5 (1C, s,
CH2COOH), 31.4 (TeCH2CH2), 30.9 (TeCH2CH2CH2), 29.0−28.0
(1C, s, TeCH2CH2CH2(CH2)5CH2CH2COOH), 24.2 (1C, s,
CH2CH2COOH), 1.8 (1C, s, TeCH2). ESI-MS (Figure S3 in the
SI): m/z 499.2 ([M − H]−).
Oxidation and Reduction Experiment of MTeC10COOH. A total

of 12.0 mg (0.024 mmol) MTeC10COOH was dissolved in 5 mL
CH3OH, and 5.5 μL of 30% H2O2 (0.048 mmol) was added to the
solution. Then the flask was sealed by a rubber plug, and the oxidation
reaction was carried out at room temperature for 4 h with stirring.
CH3OH was evaporated under reduced pressure. After a 1H NMR
test, the oxidized product was redissolved in 10 mL CH3OH, and 8.46
mg (0.048 mmol) of ascorbic acid was added to the solution. The
reduction reaction was carried out at room temperature for another 4
h, and CH3OH was evaporated under reduced pressure.
Preparation of Different Mass Ratios of Coassemblies. Before

fabrication of coassemblies with different mass ratios, 25.0 mg/mL
DPPC (chloroform solution) and 5.0 mg/mL MTeC10COOH
(methanol solution) were prepared. To fabricate 10:1 DPPC/
MTeC10COOH coassemblies, 80 μL of the DPPC solution (2.0 mg
of DPPC) and 40 μL of the MTeC10COOH solution (0.2 mg of
MTeC10COOH) were mixed under sonication. The solvent was
evaporated by a dry nitrogen stream and thoroughly dried in a vacuum
oven for another 3 h. Then 4.0 mL of degassed pH = 9.00 aqueous
buffer was added, and the hydration process continued overnight at
room temperature. The fabrication of other coassemblies was similar;
the solutions used were shown in Table 1.

■ RESULTS AND DISCUSSION
Oxidation and Reduction Process of MTeC10COOH.

The oxidation and reduction process of MTeC10COOH was

studied by 1H NMR in CD3OD, as shown in Figure 1. The
chemical shift of α protons of tellurium atoms before oxidation
was 2.63 ppm. After oxidation by 2 equiv of H2O2, the 2.63
ppm peak disappeared and downshifted to 2.83 ppm. In the
presence of 2 equiv of ascorbic acid (Vc), the peak at 2.63 ppm
turned up again, which indicated that the tellurium atoms
turned to reduced states again. After the oxidation and
reduction process, the peak for α protons of the carboxylic
groups shifted from 2.14 to 2.16 ppm, which may be attributed
to ascorbic acid (Vc) which can influence the pH of the system
and further influence the amount of negative charge on the

Table 1. Preperation of Different Mass Ratios of
Coassemblies

mass ratios
of

coassemblies

volume (μL) of
25.0 mg/mL

DPPC

volume (μL) of 5.0
mg/mL

MTeC10COOH
volume (mL) of
pH = 9.00 buffer

10:1 80 (2.0 mg) 40 (0.20 mg) 4.0
6:1 80 (2.0 mg) 66 (0.33 mg) 4.0
4:1 80 (2.0 mg) 100 (0.50 mg) 4.0
1:1 80 (2.0 mg) 400 (2.0 mg) 4.0

Figure 1. 1H NMR spectra (CD3OD, 400 M, 298 K) for the redox
process of MTeC10COOH.

Figure 2. Size distribution and average hydrodynamic diameters of
coassemblies with different mass ratios.

Figure 3. Coassembly behaviors of 10:1 coassemblies: (a) results of
DLS measurement; (b) TEM image stained by uranyl acetate; (c) EDS
measurement to determine the content of tellurium.
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carboxylic groups. The oxidation and reduction process showed
that MTeC10COOH can be reversibly oxidized and reduced.
Self-Assembly Properties of DPPC and MTeC10COO-

Na. In an alkali aqueous solution (pH = 9.00 buffer), DPPC
and MTeC10COONa can self-assemble on account of their
amphiphilic nature, respectively. The critical micelle concen-
tration (CMC) of DPPC was measured by fluorescence using
pyrene as the probe. The results showed that the CMC of
DPPC was 3 × 10−3 mM. Via DLS, the average hydrodynamic
diameter of the assemblies was found to be approximately 74
nm (Figure S4a in the SI). Also the average diameter in the
TEM image was 45 nm (Figure S4b in the SI). The results
indicated that the assemblies were spherical micelles. Similarly,
the CMC of MTeC10COONa was determined to be 4 × 10−1

mM. The average hydrodynamic diameter measured by DLS
was 297 nm, as shown in Figure S5a in the SI. The TEM image
is shown in Figure S5b in the SI, and the average diameter was

64 nm, which was consistent with the results of DLS for
MTeC10COONa self-assembled in spherical micelles.

Coassembly Behaviors of DPPC and MTeC10COONa.
It is known that phospholipids tend to form vesicles. Because
adding detergent into phospholipid aggregates may cause a
phase transition such as that from vesicle to micelle,57−61 we try
to use MTeC10COONa, which is an amphiphilic detergent, to
obtain coassemblies with phospholipids and adjust the
structures of the coassemblies.
Owing to the hydrophobic and electrostatic interactions

between DPPC and MTeC10COONa, they can successfully
coassemble in an alkali aqueous solution. Size distributions of
coassemblies with different mass ratios were measured by DLS.
As shown in Figure 2, all of the average hydrodynamic
diameters were between self-assemblies of DPPC and
MTeC10COONa. As more and more MTeC10COONa was
added to the system, the average hydrodynamic diameters of
the coassemblies showed an increasing trend. Dispersion of the
size distributions increased at the same time. The phenomenon
indicated that the size distributions and average hydrodynamic
diameters of coassemblies were positively correlated with the
relative content of MTeC10COONa of the system, which
showed the generation of new aggregates in the system and can
indirectly prove the coassembly process.
The coassembly behaviors of coassemblies with different

mass ratios were studied in detail, and the results are shown in
Figure 3 (DPPC and MTeC10COONa as a mass ratio of 10:1
and a molar ratio of 6:1) and S7 in the SI (mass ratios of 4:1
and 1:1). Employing a 10:1 coassembly as an example, via DLS,
the average hydrodynamic diameter of the aggregates was
determined to be 159 nm (Figure 3a), which was between that
of DPPC and MTeC10COONa themselves. The TEM results

Figure 4. 1H NMR (D2O, 400 M, 298 K) for redox process of 10:1
coassemblies.

Figure 5. ESI-MS spectra (negative spectra) for 10:1 coassemblies oxidized by 100 μM H2O2: (a) oxidized for 1 h; (b) amplified scheme of part a;
(c) oxidized for 5 h; (d) amplified scheme of part c.
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are shown in Figure 3b, and the average diameter was around
57 nm. Owing to the aqueous environment of the coassemblies,
the average hydrodynamic diameter characterized by DLS was
affected by the hydration effect of water. Thus, the results of
TEM (Figure 3b) and SEM (Figure S6 in the SI) images
seemed smaller than that of DLS. To further prove the
coassembly behaviors, EDS was employed to detect the content
of tellurium (Figure 3c). The results indicated that there was
tellurium in the coassemblies, which can also prove the
successful coassembly.
Reversible Oxidation and Reduction of Coassemblies.

Owing to the reversible redox nature of MTeC10COONa, it
was of significance to investigate the redox properties of the
coassemblies. To achieve the 1H NMR experiment, the
hydration process of the coassembly was conducted in a D2O
buffer, and the content of the molecules was much
concentrated to achieve a better signal in 1H NMR measure-
ment. For example, in 10:1 coasssemblies, the concentrations of
DPPC and MTeC10COONa were 5.0 and 0.50 mg/mL,
respectively. After removal of the solvent, 3.0 mL of a D2O
buffer was added, and the system was stirred overnight at room
temperature. As shown in Figure 4, peaks at 2.16 and 1.53 ppm
were for α and β protons of the carboxylic group, respectively.
There was no peak for α nor β protons of tellurium atoms of
the original 10:1 coassemblies. After the addition of 2 equiv of

H2O2, new peaks at 2.85 and 1.87 ppm appeared, which each
represented the α and β protons of tellurium atoms of the
oxidized states. Upon reduction by 2 equiv of Vc, the new peaks
disappeared again. To explain the phenomenon, we put forward
an assumption. Before oxidation, MTeC10COONa molecules
may be encapsulated in the coassemblies, which resulted in the
disappearance of the α and β protons of tellurium atom signals.
After oxidation by H2O2, the tellurium atoms changed to the
oxidized states, with increased hydrophilicity, the tellurium-
containing molecules tend to move to the solution or to the
surface of the coassemblies; thus, the signals of oxidized
tellurium were observed. Utilizing Vc can reduce MTeC10-
COONa to reduced states again; thus, MTeC10COONa
molecules moved back to the interior of the coassemblies.

Characterization of the Product after Oxidation.
Owing to the ultrasensitive ROS responsiveness of telluride-
containing molecules, MTeC10COONa can be oxidized by a
low concentration of H2O2. The oxidation product of the
coassemblies was characterized by using ESI-MS negative
spectra (Figure 5). After oxidation by 100 μM H2O2 for 1 h, the
coassemblies can be easily oxidized to the oxidized state. As
shown in Figure 5a, the ionic peak at 515.2 corresponding to
MTeC10COONa with one oxygen atom added was found with
typical isotopic peaks, and there were no peak for the reduced
state of MTeC10COONa. An amplified scheme is shown in
Figure 5b. When the oxidation time was extended to 5 h, the
oxidized product remained a one-oxygen-atom-added structure,
and typical isotopic peaks were also observed (Figure 5c,d).
These results indicated that MTeC10COONa in coassemblies
can be easily oxidized by 100 μM H2O2 to a structure with one
oxygen atom added on tellurium. The morphology of oxidized
10:1 coassemblies was also studied by using TEM (Figure S8 in
the SI). The results indicated that after oxidation the
coassemblies were still spherical aggregates and tended to
stack together.

Coassembly as a General Approach To Fabricate
Reversible Redox Systems. The coassembly methodology
can be employed as a general method to fabricate reversible
redox systems. By using DPPE, another phospholipid to
coassemble with MTeC10COONa, we can prepare a similar
reversible redox system, of which the main driving force was
hydrophobic interactions. Coassemblies of 10:1 (Figures 6 and
S9 in the SI) and 4:1 (Figure S10 in the SI) were fabricated and
characterized by DLS, TEM, SEM, EDS, and so on. As shown
in Figure 6a, by using DLS, the average hydrodynamic diameter
of the 10:1 coassemblies was confirmed to be 134 nm, and the
average diameter measured by TEM was 34 nm (Figure 6b).
EDS results (Figure 6c) also showed the existence of tellurium
in the coassemblies, which showed the successful coassembly.
The reversible redox process of 10:1 coassemblies of DPPE

and MTeC10COONa was also investigated by using 1H NMR.
As shown in Figure S11 in the SI, there was no peak of α or β
protons of tellurium atoms of the original 10:1 coassemblies;
after the addition of 2 equiv of H2O2, new broad peaks
appeared at 2.85 and 1.87 ppm, which represented the α and β
protons of tellurium atoms of the oxidized states, respectively.
Also, upon reduction by 2 equiv of Vc, the broad peaks
disappeared. This showed a phenomenon similar to that of the
10:1 coassemblies of DPPC and MTeC10COONa.
The product of 10:1 coassemblies of DPPE and MTeC10-

COONa after oxidation and reduction was also characterized
by a ESI-MS negative spectrum. In the presence of 100 μM
H2O2 aqueous solution for 1 h, MTeC10COONa in the

Figure 6. Coassembly behaviors of 10:1 coassemblies between DPPE
and MTeC10COONa: (a) results of DLS measurement; (b) TEM
image stained by uranyl acetate; (c) EDS measurement to determine
the content of tellurium.
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coassemblies can change to the oxidized state with one oxygen
atom added, of which the molecular ionic peak is at 515.2 (m/z,
[M − H]−), with typical isotopic peaks, as shown in Figure
S12a in the SI. The zoom-in scheme is shown in Figure S12b in
the SI. When the oxidation time was increased to 5 h, the
oxidized product remained a one-oxygen-atom-added structure,
as shown in Figure S12c in the SI, and typical isotopic peaks
were also observed (Figure S12d in the SI).

■ CONCLUSION AND OUTLOOK

In this work, we have successfully prepared a reversible redox
system that was responsive to ultradiluted H2O2 (100 μM) by
coassembling two different kinds of molecules: tellurium-
containing molecules MTeC10COONa and phospholipid
DPPC. The assembly behaviors and redox responsiveness
were determined by DLS, TEM, SEM, 1H NMR, and so on.
This indicated that the MTeC10COONa molecules can be
oxidized and reduced by 2 equiv of H2O2 and Vc, respectively.
Also, in the presence of 100 μM H2O2, the MTeC10COONa
molecules can be oxidized in 1 h. We also showed that the
coassembly between MTeC10COONa and another phospho-
lipid, DPPE can be realized. Thus, the coassembly between
phophoslipid and tellurium-containing molecules can be
empolyed as a general method to fabricate ultrasensitive
ROS-responsive systems. Our preliminary study also showed
that, by the coassembly of MTeC10COONa and DPPC, ion
channels can be formed and switched on and off by redox
stimuli (Figure S13 in the SI). Further experiments are
currently ongoing.
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